

Year 6

Mathematics

Practice Questions

Geometry

Table of Contents

Section One: 2D Shapes	3
Section Two: 3D Shapes	8
Section Three: Triangles	
Section Four: Symmetry	
Section Five: Reflect and Translate	
Section Six: Coordinates	

Section One: 2D Shapes

Match each shape to the correct name.

[2012]

One has been done for you.

ď	9
ш	O

Here is a shape on a grid.

[2014]

For each statement, put a tick (\checkmark) if it is true. Put a cross (x) if it is not true.

Q	The shape is a quadrilateral.	
	The shape has 2 lines of symmetry.	

The shape is a parallelogram.

The shape has one right angle.

[2 marks]

18

The diagonals of this quadrilateral cross at right angles.

[2016]

Tick **all** the quadrilaterals that have diagonals which cross at right angles.

[2 marks]

Look at the shaded shape on the square grid.

[Extra]

For each statement below, tick (✓) to show if it is True or False.

	True	False
The shaded shape is a quadrilateral.		
The shaded shape has four equal sides.		
The shaded shape has four equal angles.		
The shaded shape has two pairs of parallel sides.		

[2 marks]

Here are four shapes on a square grid.

[2014]

Write the letters of all the shapes that have exactly two sides which are equal in length.

[1 mark]

23

Here is a diagram for sorting shapes.

[2008]

One of the shapes is in the wrong place. Put a cross (X) on it.

Section Two: 3D Shapes

A cuboid has 8 vertices.

[Extra]

How many vertices does this 3-D shape have?

A different 3-D shape has 8 vertices.

It has 6 faces. Each face is the same.

cube

Put a ring around the correct name for this 3-D shape.

square pyramid cylinder

rectangle

9		
9		
	Ľ	

Here are diagrams of some 3-D shapes.

[2017]

Tick each shape that has the same number of faces as vertices.

Cube

Square-based pyramid

Triangular prism

Triangular-based pyramid

[2 marks]

This table shows information about four solid shapes.

[2005]

Complete the table.

One has been done for you.

Q	
1	é
	7

	number of flat surfaces	number of curved surfaces
sphere	0	1
cone		
cuboid		
cylinder		

Here are some nets of shapes.

[2008]

For each net, put a tick (\checkmark) if it folds to make a **pyramid**. Put a cross (x) if it does not.

[2 marks]

15

The table shows information about three solid shapes.

[New]

Complete the table.

	number of faces	number of vertices
cube	6	
triangular prism		
square-based pyramid		

Look at the cuboid below.

[2015]

Draw **two** more faces to complete the net of the cuboid.

This shape is made of wooden centimetre cubes.

[2015]

How many **more** centimetre cubes are needed to make it into a solid cuboid 3 cm tall, 5 cm long and 5 cm wide?

[1 mark]

Section Three:

Triangles

This diagram shows a square with dots at the vertices and at the middle of each side.

The square is divided into four triangles, A, B, C and D.

Write the letters of all the triangles that have a **right angle**.

Write the letters of all the isosceles triangles.

[2 marks]

Anna has four different triangles.

[Extra]

Complete the table to show the size of the angles in each triangle.

Type of triangle	Angle 1	Angle 2	Angle 3
Isosceles	90°		
Right-angled	80°		
Isosceles	70°		
Isosceles	70°		

Here are five shaded triangles on a square grid.

[2010]

Write the letter of each triangle that has a right angle.

Write the letter of each triangle that has two equal sides.

[2 marks]

7

A triangle has three equal sides.

[Extra]

Write the sizes of the **angles** in this triangle.

A right-angled triangle has two equal sides.

Write the sizes of the **angles** in this triangle.

9 [2007]	Jamie draws a triangle.
[2007]	He says,
	'Two of the three angles in my triangle are obtuse'.
	Explain why Jamie cannot be correct.
	[1 mark]
10	Here are four statements.
[2005]	For each statement put a tick (✓) if it is possible . Put a cross (×) if it is impossible .
	A triangle can have 2 acute angles.
	A triangle can have 2 obtuse angles.
	A triangle can have 2 parallel sides.
	A triangle can have 2 perpendicular sides.
	[2 marks]

| Page

Here are five triangles on a square grid.

[2016]

Four of the triangles have the same area.

Which triangle has a different area?

[1 mark]

14

Is it possible to draw a triangle with sides 150cm, 10cm and 10cm?

No

[Extra]

Yes

Explain your answer.

Section Four: Symmetry

1

Draw the reflection of all the shaded shapes in the mirror line.

[2013]

[1 mark]

2

Draw in and shade 3 triangles to complete the reflection in the mirror line.

[Extra]

[2008]

Draw **two** more circles on this grid to make a design that has a line of symmetry.

[1 mark]

4

[2004]

Complete the diagram below to make a shape that is symmetrical about the mirror line.

Use a ruler.

These diagrams are made from regular octagons.

[2011]

Draw the line of symmetry on each diagram.

Use a ruler.

These three square tiles have symmetrical patterns on them.

[2015]

Draw the line of symmetry on each tile.

Use a ruler.

[2 marks]

11

This diagram shows a shaded shape inside a border of squares.

[2016]

Draw the reflection of the shape in the mirror line.

Use a ruler.

Here are four designs made from two sizes of circles.

[2013]

Write the letters of all the designs that have line symmetry.

[1 mark]

20

[Extra]

Section Five:

Reflect and Translate

1

Draw the reflection of the shaded shape in the mirror line.

[Extra]

Use a ruler.

[1 mark]

2

Here is a square with a design on it.

[2002]

The square is reflected in the mirror line.

Draw the missing triangle and dots on the reflected square.

mirror line

Here is a design and a mirror line.

[2003]

mirror line

Which **one** of the designs below is the reflection of the design in the mirror line?

Tick (\checkmark) the correct design.

10

A triangle is translated from position **A** to position **B**.

[2016]

Complete the sentence.

The triangle has moved	squares to the right
and	squares down.

[1 mark]

Here is a quadrilateral on a square grid.

[2010]

The quadrilateral is translated so that point **A** moves to point **B**.

Draw the quadrilateral in its new position.

Use a ruler.

[1 mark]

14

Here is a shape on a square grid.

[2016S]

The shape is translated so that point **A** moves to point **B**.

Draw the shape in its new position.

Use a ruler.

[2017]

The triangle is translated 7 right and 5 up.

Draw the triangle in its new position.

[1 mark]

[2016S]

Write the coordinates of points A and B.

[2 marks]

Here are two triangles drawn on coordinate axes.

[2016]

Triangle B is a reflection of triangle A in the x-axis.

Two of the new vertices of triangle B are (10, -10) and (20, -30).

What are the coordinates of the **third** vertex of triangle B?

[1 mark]

Section Six:

Coordinates

2

Here is a kite.

[2004]

Write the coordinates of point **D**.

[1 mark]

3

The shaded shape is a parallelogram.

[2002]

Write the coordinates of point A.

Here is a pentagon drawn on a coordinate grid.

[2003]

The pentagon is symmetrical.

Write the coordinates of point C.

[1 mark]

5

In this diagram R is an equal distance from P and Q.

[2015]

What are the coordinates of point R.

Here is a line on coordinate axes.

[2012]

Points O, P, Q and R are equally spaced.

The coordinates of $\bf P$ are (25,12).

What are the coordinates of R?

[1 mark]

[2017]

- (1, 5) (5, 4) (1, -3) (-3, 4)

One side of the quadrilateral has been drawn on the grid.

Complete the quadrilateral.

Use a ruler.

